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ABSTRACT

Several simple approximate hard-sphere relations for transport coefficients

are compared with the results of molecular dynamics, MD, simulations per-

formed on Lennard-Jones, LJ, fluids. Typically the individual transport coef-

ficients: self-diffusion coefficients, D, shear viscosity, ηs, bulk viscosity, ηB and

thermal conductivity, λ agree within a factor of two of the exact results over

the fluid and liquid part of the phase diagram, which seems reasonable enough

in view of the approximations involved in the models. We have also considered

the ratio, λ/ηs and the product, Dηs for which simple analytic expressions exist

in the hard-sphere models. These two quantities also agree within a factor of

two of the simulation values and hard sphere analytic expressions.

Using time correlation functions, Tankeshwar has recently related the ratio

λ/D to thermodynamic quantities; in particular to the differences in specific

heats, Cp−CV and to the isothermal compressibility, κT . Using D and thermo-

dynamic values taken solely from LJ MD his relation was tested and found to

give typically better than ∼ 20 % agreement at liquid densities, deteriorating

somewhat as density decreases into the gas phase.

Finally liquid metals are considered. In this case, λ is dominated by its

electronic contribution, which is related approximately to the electrical con-

ductivity by the Wiedemann-Franz Law. Some theoretical results for electrical

2



conductivity of Na are referred to, and allow a semiquantitative understanding

of the measured thermal conductivity of the liquid metal to be gained. Shear

viscosity is also discussed and following the work of Tosi is found to be domi-

nated by ionic contributions. Notwithstanding this, at the melting temperature

of Na, a relation emerges between thermal conductivity, electrical resistivity

and shear viscosity.

KEY WORDS: Diffusion, liquid metals, thermal conductivity, shear viscos-

ity, simple liquids
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1 INTRODUCTION

Static atomic structure in liquids is accessible through neutron experiments

which allow, amongst other things, the stucture factor, S(k) and essentially

its Fourier transform the pair correlation function or radial distribution func-

tion g(r) to be extracted. Examples are given in the book by Egelstaff [1].

However, theoretical calculations of the analytic nature of S(k) and g(r) re-

main somewhat hampered by a lack of knowledge of the three-atom correlation

function g(3) even when a pair potential, φ(r) is assumed to exist and is taken

as input information. Therefore it is usually necessary to resort to computer

simulation (Molecular Dynamics, MD, or Metropolis Monte Carlo, MC) to ob-

tain g(r) from a particular pair potential. Early attempts to express transport

coefficients in terms of essentially only g(r) and φ(r) met with only partial suc-

cess, and emphasis has moved into the area of the dynamical structure factor,

S(k, ω) which was introduced into the theory of liquids by van Hove [2]. Its

physical interpretation is set out below. We note here first that it is accessible

again by (inelastic) neutron scattering [1] or in a more limited region of the

(k, ω) plane by light scattering. Some recent applications to metallic lithium

has been reported.

The link between these scattering functions and transport coefficients is

through the so-called Green-Kubo formulas [3]. These exploit the fact that

S(k, ω) for example can be related to hydrodynamic equations containing the
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transport coefficients in the long wavelength (i .e., k → 0) and low frequency

(i .e., ω → 0) limits. This approach will be applied to metallic liquids below.

Again as in the static structure problem computer simulation has been ap-

plied many times to the dynamics of molecules in liquids. A considerable body

of data exists on computed transport coefficients, S(k, ω) and related time cor-

relation functions. The focus of the present work is to review the extent to

which simple models can be used to account for ‘experimental’ data obtained

from ‘real’ experiments (e.g., neutron scattering) or MD ‘computer’ experi-

ments.

2 Simple Liquids modeled using the Lennard-

Jones Potential

After the above rather general considerations we turn to consider a specific

and popular model fluid, the so-called Lennard-Jones (LJ) fluid in which the

model molecules interact through the Lennard-Jones potential,

φ(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]
, (1)

where σ and ε are the length and energy scaling parameter, respectively.
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In this section we consider the predictions for the transport coefficients

from MD simulations and compare them with hard-sphere models for specific

transport coefficients. The LJ fluid is the ideal model fluid as its transport

coefficients [4, 6] and equation of state [7] are reasonably well known over the

whole phase diagram.

Semi-empirical expressions can be derived for the transport coefficients in

terms of thermodynamic quantities, which can be obtained independently. For

example Longuet-Higgins and Pople have derived simple expressions for the

transport coefficients based on the approximate kinetics of an equivalent hard-

sphere fluid, with hard-sphere diameter, σHS, [8, 9],

D =
σHS

4
(
πkBT

m
)1/2(

PV

NkBT
− 1)−1 (2)

ηs =
2σHSρHS

5
(
mkBT

π
)1/2(

PV

NkBT
− 1) (3)

and for the bulk viscosity, ηB ,

ηB =
2σHSρHS

3
(
mkBT

π
)1/2(

PV

NkBT
− 1) (4)

λ = σHSkBρHS(
kBT

πm
)1/2(

PV

NkBT
− 1) (5)

where ρHS = Nσ3
HS/V and the compressibility factor is that of the equivalent

hard sphere system at the same temperature. We call Eqs. (2)-(5) the LHP

transport coefficient formulas.
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The problem with these expressions in Eqs. (2)- (5) is that they do not

go over to the known kinetic theory expressions in the dilute gas limit. An

alternate proposal in the same vein which does not have this deficiency is to

use the following expressions,

D =
3

8ρσ2
HS

(
kBT

πm
)1/2(

PV

NkBT
)−1 (6)

ηs =
5

16σ2
(
mkBT

π
)1/2(

PV

NkBT
) (7)

ηB =
5

16σ2
(
mkBT

π
)1/2(

PV

NkBT
) (8)

λ =
75kB
64σ2

(
kBT

πm
)1/2(

PV

NkBT
) (9)

We call Eqs. (6)-(9) the H transport coefficient formulas.

In Table 1 we compare the self-diffusion coefficients and thermal conductiv-

ities from the different approaches and in Table 2 the viscosities are similarly

compared. The four highest density states in these tables are close to the

fluid-solid coexistence line [10]. Best agreement with simulation data is found

with the self-diffusion coefficients from the Longuet-Higgins and Pople LHP

expression. The LHP thermal conductivity is uniformly about a factor of 2 too

small. The LHP and H shear viscosities are about 50 % of the simulation val-

ues. Agreement in general between the simulation and approximate formulas

is therefore not too bad bearing in mind the approximations employed in the

derivations of these formulas. The alternative prescriptions of Eqs. (6)- (9) are

competitive formulations, and also have some additional advantages in going
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smoothly over to the ideal gas limits.

3 Lennard-Jones Fluids: Transport Coefficient

Ratios

Now we focus on relations between transport coefficients which emerge the

hard-sphere theories (see Collins and Raffel [11] and Longuet-Higgins and Pople

[8]) and the ‘exact’ MD results. The first of these relationships concerns the ra-

tio of the thermal conductivity, λ to the shear viscosity, ηs. Using the Longuet-

Higgins and Pople formulas one obtains the following relationship between the

thermal conductivity and the shear viscosity,

λ

ηs
=

5kB
2m

(10)

The ratios, λ/ηs, obtained from simulation are given in Table 3, and (apart

from the low density state of ρ = 0.6) are quite close to the value of 2.5 in

reduced units predicted by Eq. (10).

The second relationship we consider the product of the self-diffusion coef-

ficient and the shear viscosity. Using the Longuet-Higgins and Pople formulas

we obtain,

Dηs =
σ2
HS

10
ρHSkBT (11)
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Results for this product are compared with the MD LJ values in Table 3. Again

the ratio given by Eq. (11) is seen to be semi-quantitative apart from the low

density states where the right-hand side of this equation is a factor of between

2 and 3 lower than the left-hand side. Otherwise, a factor of two usually covers

the deviations between the two sides of Eq. (11).

For the ratio of the thermal conductivity to the self-diffusion coefficient

Tankeshwar [12] has used time-dependent correlation functions to derive the

approximate relation

λ =
2πρ(Cp − Cv)D

S(0)
(12)

where we can use for the structure factor in the limit of zero k−vector, S(0) =

ρkBTκT in terms of the isothermal compressibility κT . An assessment of the

accuracy of these expressions can be made for the LJ fluid using its equation

of state and transport coefficients in Table 1. The formula for λ Eq. (12) gives

values that are about a factor of 2 too large (see Table 1) when compared

with the simulation values. This relation is again of some practical merit at

liquid-like densities but is ca. 2-3 too large at lower reduced densities ∼ 0.5 .
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4 Liquid Metals

The self part Ss of the van Hove dynamical structure factor referred to above

can be written explicitly in the long-time and long-wavelength limits as [3],

Ss(k, ω) =
Dk2

π(ω2 + (Dk2)2)
(13)

which because of the range of validity (large r and t) of the diffusion equation

applies for small k and ω. It follows straightforwardly from Eq. (13) that one

can write for the transport coefficient D:

D

π
= lim

ω→0
ω2 lim

k→0

Ss(k, ω)

k2
(14)

which is the first of the so-called Green-Kubo formulas.

4.1 van Hove Dynamical Structure factor S(k, ω)

Having introduced a formula for diffusion, let us turn to the dynamic gener-

alization ( i .e., S(k, ω)) of the static liquid structure factor S(k) which has

already been discussed. The first point to be stressed is that S(k, ω) has the

physical interpretation that it is the probability that a neutron incident on the

liquid transfers momentum h̄k and energy h̄ω to the liquid. The second point

is that the integral of the dynamical structure factor S(k, ω) over all energy

transfers h̄ω leads back to S(k) i .e.,

∫ ∞
−∞

S(k, ω)dω = S(k) (15)
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In addition to this so-called zero moment theorem, it can also be shown for a

classical liquid consisting of ions of mass m that,

∫ ∞
−∞

ω2S(k, ω)dω =
k2kBT

m
(16)

which is the second-moment theorem. There is a corresponding Green-Kubo

formula for S(k, ω) to that of Eq. (14) namely,

lim
ω→0

ω4 lim
k→0

Ss(k, ω)

k4
=
kBT

π

(4
3
ηs + ζ)

ρm2
(17)

where ρ is the ionic number density of the liquid and ζ is the bulk or compres-

sional viscosity.

4.2 Relationships between D and ηs for Liquid Metals

Above the Freezing Point

The above Green-Kubo formulas were used by Brown and March [13]. For

liquid metals just above the melting temperature, Tm, these workers exploited

the fact that the self-correlation funnction Ss(k, ω) and the dynamical structure

factor S(k, ω) entering the Green-Kubo formulas have a rather well-defined fre-

quency range 0 < ω < ωD, the Debye frequency ωD being analogous to that in

a crystalline solid. Relating ωD to the melting temperature Tm using Linde-

mann’s law of melting, Brown and March obtained the approximate relations

for the ionic transport coefficients at Tm:

Dm1/2ρ1/3

T
1/2
m

= constant (18)
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and

ηs

m1/2ρ2/3T
1/2
m

= constant (19)

The formula in Eq. (19) was obtained earlier from kinetic theory arguments by

Andrade [14] which would no longer be regarded as convincing [15]. However

this relationship leads to quantitative results if the constant is chosen empir-

ically as illustrated in Table 4 below. However, the result from Eq. (18) is

less impressive. One reason for this is that whereas Eqs. (18) and (19) yield a

relation between D and ηs at melting of the form,

Dηs

kBT
ρ−1/3 = constant (20)

subsequent work of Zwanzig [16][17] discussed in March [18] yields more gen-

erally

Dηs

kBT
Ω1/3 = 0.0658(2 +

ηs

ηl
) (21)

where Ω is the ionic volume and ηl is the longitudinal viscosity. When re-

sults for ηs/ηl eventually become available it will be of obvious interest to test

Eq. (21) for liquid metals at Tm in more detail than is currently possible.
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5 Wiedemann-Franz Law relating Thermal and

Electrical Conductivity in Liquid Metals

The dominant contribution to the thermal conductivity, λ, of metals arises from

the electrons, i .e., λe. The Wiedeman-Franz Law relates this contribution from

the electrons to the electical conductivity, σ, through

λe

σT
=
π2k2

B

3e2
= L (22)

where L is the so-called Lorenz number. Therefore, below we outline the weak

scattering theory of electical resistivity, R = σ−1.

5.1 Weak Scattering Theory of Electrical Resistivity

The idea behind weak scattering theory is to represent the total potential

energy, V (r) scattering the conduction electrons by a sum of screened potentials

v(r) at the ionic sites, Ri where one has taken a ‘snapshot’ of the ions at a

particular time:

V (r) =
∑
i

v(|r−Ri|) (23)

The resistivity R is then found by using this result and working to second order

in v. As only pairs of sites Ri are then correlated, taking the liquid average, one

obtains a result in terms of the structure factor S(k) and the Fourier transform

of the localized potential ṽ(k) say in Eq. (23). The result, when one puts back
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all of the numerical factors, is for weak scattering with a sharp Fermi surface

of diameter 2kf [15] with vf the corresponding Fermi velocity,

R =
3π

h̄e2v2
fρi

1

(2kf )4

∫ 2kf

0
S(k)|ṽ(k)|24k3dk (24)

This is the basic formula for the electrical resistivity, R, of simple (s−p) nearly

free electron metals such as Na and K. In Eq. (24), ρi is the ionic number

density and since S(k) is measurable by diffraction experiments the only quan-

tity needed to determine R is the Fourier transform of the localized atomic-like

screened potential energy ṽ(k). Some discussion of the way approximations

may be set up for this quantity is given in [15]. It is also relevant to note that

real liquid metals have blurred Fermi surfaces in accord with the Heisenberg

uncertainty principle,

l∆kf ∼ 1 (25)

where ∆kf is the blurring of kf and l is the electronic mean free path.

Tosi et al. [19] have applied Eq. (24) to the liquid alkali metals and find

excellent agreement. March and Tosi [20] have recently shown that use of the

Wiedemann-Franz Law of Eq. (22) then allows the temperature dependence of

the measured thermal conductivity of liquid Na to be obtained theoretically in

better than a semi-quantitative manner. These workers have also related D, λ

and ηs at the melting temperature of liquid metals.
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6 Summary and Future Directions

Emphasis has been placed here on relations between transport coefficients of

(a) Lennard-Jones fluids and (b) liquid metals near freezing. For case (a) the

ratio of the thermal conductivity to shear viscosity is usefully given by Eq. (10)

when simulation results are employed for all but the lowest density states re-

vealed in Table 3. The factor 5/2 following from the hard sphere modelling

applies quite well to the LJ simulation derived transport coefficients (which we

assume to be essentially exact). Similarly Eq. (11) relating diffusion and shear

viscosity has been found to represent the results of the LJ simulations quite

well, again apart from the low density states.

We have also tested the formula given in Eq. (12) of Tankeshwar [12], in

which using time correlation functions he has related the ratio λ/D to the

thermodynamic quantities including the long wavelength limit of the structure

factor, S(k). His relation when confronted with the transport coefficients ob-

tained by simulation of a LJ fluid is found to reflect usefully the trends in the

computer data.

Liquid metals have also been discussed, but in a much more limited way

in that most of the considerations on transport currently apply at the freezing

point only. However, the Wiedemann-Franz Law given in Eq. (22) and the
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electrical resistivity (Ziman-Krishnan-Bhatia) formula of Eq. (23) are notable

exceptions to this rule. The formula of Eq. (19) which was first given by An-

drade [14] and derived subsequently from Green-Kubo theory by Brown and

March [13] works extremely well as shown in Table 4. Equation (21) relating

the product of Dηs to the ratio ηs/ηl has not yet been subjected to careful

tesing either from experiment (because of lack of data on the longitudinal vis-

cosity) or because of the absence of systematic computer simulation results. It

would clearly be of interest in the future to have data which will allow Eq. (21)

due to Zwanzig to be tested.
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T ρ DMD DLHP DH λs,MD λs,LHP λs,H λs,T

0.73 0.844 0.029 0.040 0.018 6.9 4.29 5.80 8.71

1.06 0.910 0.035 0.045 0.022 9.2 5.34 7.56 11.12

1.46 0.993 0.031 0.048 0.024 11.2 6.85 10.0 10.96

2.50 0.600 0.32 0.29 0.23 4.17 0.95 3.85 11.32

2.50 0.803 0.18 0.16 0.11 7.2 2.37 6.16 18.66

2.51 1.040 0.059 0.077 0.046 13.8 6.26 11.35 17.32

1.21 0.966 0.040 0.042 0.020 8.9 6.6 9.2 14.7

1.83 0.50 0.37 0.31 0.24 2.6 0.61 2.7 8.0

1.81 0.60 0.26 0.22 0.16 3.4 1.03 3.5 10.7

1.90 0.801 0.13 0.12 0.076 7.4 2.60 5.8 16.1

1.84 1.049 0.033 0.05 0.027 13.5 7.74 11.8 12.6

Table 1: Comparison between the LJ self-diffusion coefficients and thermal

conductivities computed by Molecular Dynamics [4, 6]. Key: the subscripts

LHP are the predictions from the Longuet-Higgins and Pople expressions [8, 9],

and the subscripts H are the predictions from empirical formulae Eqs. (6)-(7).

λs,T is the prediction of Eq. (12). The equivalent hard sphere diameter is given

by σHS = 1.0217(1.0 − 0.0178/T 1.256)/T 1.0/12.0 taken from [21]. The hard-

sphere compressibility factor was taken from the hard-sphere equation of state

of Carnahan and Starling [22].
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T ρ ηs,MD ηs,H ηs,H ηB,MD ηB,LHP ηB,H

0.73 0.844 3.4 1.72 1.55 1.47 2.86 1.55

1.06 0.910 4.1 2.14 2.02 1.70 3.56 2.02

1.46 0.993 6.3 2.74 2.67 1.85 4.57 2.67

2.50 0.600 0.95 0.38 1.03 0.77 0.63 1.03

2.50 0.803 2.0 0.95 1.64 1.40 1.58 1.64

2.51 1.040 5.3 2.50 3.03 2.30 4.17 3.03

1.21 0.966 4.4 2.64 2.45 1.82 4.40 2.45

1.83 0.50 0.61 0.24 0.73 0.52 0.40 0.73

1.81 0.60 0.88 0.41 0.92 0.78 0.69 0.92

1.90 0.801 2.0 1.04 1.55 1.38 1.73 1.55

1.84 1.049 8.0 3.09 3.15 2.19 5.16 3.15

Table 2: Comparison between the LJ shear and bulk viscosities computed by

Molecular Dynamics [4, 6]. Key: the subscripts LHP are the predictions from

the Longuet-Higgins and Pople expressions [8, 9], and the subscripts H are the

predictions from empirical formulas Eqs. (8)-(9).
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T ρ λMD/ηs,MD DMDηs,MD σ2
HSρHSkBT/10

0.73 0.844 2.03 0.099 0.068

1.06 0.910 2.24 0.14 0.096

1.46 0.993 1.78 0.195 0.13

2.50 0.600 4.39 0.30 0.11

2.50 0.803 3.60 0.36 0.15

2.51 1.040 2.60 0.31 0.19

1.21 0.966 2.02 0.18 0.11

1.83 0.50 4.26 0.23 0.076

1.81 0.60 3.86 0.23 0.091

1.90 0.801 3.70 0.26 0.12

1.84 1.049 1.69 0.26 0.16

Table 3: Comparison between the LJ shear and bulk viscosities computed by

Molecular Dynamics [4, 6]. Key: the subscripts LHP are the predictions from

the Longuet-Higgins and Pople expressions [8, 9], and the subscripts H are the

predictions from empirical formulas Eqs. (8)-(9).
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Metal Experiment Theory

Li 0.60 0.56

Na 0.69 0.62

K 0.54 0.50

Rb 0.67 0.62

Cs 0.69 0.66

Cu 4.1 4.2

Ag 3.9 4.1

Au 5.4 5.8

In 1.9 2.0

Sn 2.1 2.1

Table 4: Shear viscosities (cP) of liquid metals at freezing. The theory is

derived from Eq. (19).
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